Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cardiovasc Drugs Ther ; 37(5): 1021-1026, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35488973

RESUMO

PURPOSE: Previous work suggests that Dihydroorotate dehydrogenase (DHODH) inhibition via teriflunomide (TERI) may provide protection in multiple disease models. To date, little is known about the effect of TERI on the heart. This study was performed to assess the potential effects of TERI on cardiac ischemia reperfusion injury. METHODS: Male and female rat hearts were subjected to global ischemia (25 min) and reperfusion (120 min) on a Langendorff apparatus. Hearts were given either DMSO (VEH) or teriflunomide (TERI) for 5 min prior to induction of ischemia and during the reperfusion period. Left ventricular pressure, ECG, coronary flow, and infarct size were determined using established methods. Mitochondrial respiration was assessed via respirometry. RESULTS: Perfusion of hearts with TERI led to no acute effects in any values measured across 500 pM-50 nM doses. However, following ischemia-reperfusion injury, we found that 50 nM TERI-treated hearts had an increase in myocardial infarction (p < 0.001). In 50 nM TERI-treated hearts, we also observed a marked increase in the severity of contracture (p < 0.001) at an earlier time-point (p = 0.004), as well as reductions in coronary flow (p = 0.037), left ventricular pressure development (p = 0.025), and the rate-pressure product (p = 0.008). No differences in mitochondrial respiration were observed with 50 nM TERI treatment (p = 0.24-0.87). CONCLUSION: This study suggests that treatment with TERI leads to more negative outcomes following cardiac ischemia reperfusion, and administration of TERI to at-risk populations should receive special considerations.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Masculino , Feminino , Coração , Miocárdio
3.
Curr Opin Pharmacol ; 54: 27-35, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745970

RESUMO

Heart failure is a leading cause of death in the United States. Diabetes, also known as diabetes mellitus (DM), exponentially increases the risk of heart failure. The increase in oxidative stress and metabolic dysfunction caused by DM can lead to DNA damage and the development of diabetic cardiomyopathy. Ataxia telangiectasia mutated kinase (ATM) is a DNA damage response protein with a primary nuclear function to regulate cell cycle progression in response to double-strand DNA breaks, acts as a redox sensor, and facilitates DNA repair. ATM deficiency associates with the development of insulin resistance and DM. Consequently, patients with Ataxia telangiectasia, a rare autosomal recessive disorder, have an increased risk of developing heart failure. The main objective of this review is to summarize the shared metabolic and cardiac abnormalities associated with DM and ATM deficiency, with a focus on the development of heart failure.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Insuficiência Cardíaca/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Diabetes Mellitus Tipo 2/genética , Cardiomiopatias Diabéticas/genética , Metabolismo Energético , Insuficiência Cardíaca/genética , Humanos , Resistência à Insulina , Miocárdio/metabolismo
4.
Stem Cell Reports ; 11(3): 626-634, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146492

RESUMO

Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy with a high incidence of sudden unexpected death in epilepsy (SUDEP). Most DS patients carry de novo variants in SCN1A, resulting in Nav1.1 haploinsufficiency. Because SCN1A is expressed in heart and in brain, we proposed that cardiac arrhythmia contributes to SUDEP in DS. We generated DS patient and control induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). We observed increased sodium current (INa) and spontaneous contraction rates in DS patient iPSC-CMs versus controls. For the subject with the largest increase in INa, cardiac abnormalities were revealed upon clinical evaluation. Generation of a CRISPR gene-edited heterozygous SCN1A deletion in control iPSCs increased INa density in iPSC-CMs similar to that seen in patient cells. Thus, the high risk of SUDEP in DS may result from a predisposition to cardiac arrhythmias in addition to seizures, reflecting expression of SCN1A in heart and brain.


Assuntos
Canalopatias/patologia , Morte Súbita/patologia , Epilepsias Mioclônicas/patologia , Miócitos Cardíacos/patologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Sistemas CRISPR-Cas , Células Cultivadas , Canalopatias/genética , Criança , Pré-Escolar , Epilepsias Mioclônicas/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética
5.
Proc Natl Acad Sci U S A ; 114(9): 2383-2388, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193882

RESUMO

Patients with early infantile epileptic encephalopathy (EIEE) experience severe seizures and cognitive impairment and are at increased risk for sudden unexpected death in epilepsy (SUDEP). EIEE13 [Online Mendelian Inheritance in Man (OMIM) # 614558] is caused by de novo missense mutations in the voltage-gated sodium channel gene SCN8A Here, we investigated the neuronal phenotype of a mouse model expressing the gain-of-function SCN8A patient mutation, p.Asn1768Asp (Nav1.6-N1768D). Our results revealed regional and neuronal subtype specificity in the effects of the N1768D mutation. Acutely dissociated hippocampal neurons from Scn8aN1768D/+ mice showed increases in persistent sodium current (INa) density in CA1 pyramidal but not bipolar neurons. In CA3, INa,P was increased in both bipolar and pyramidal neurons. Measurement of action potential (AP) firing in Scn8aN1768D/+ pyramidal neurons in brain slices revealed early afterdepolarization (EAD)-like AP waveforms in CA1 but not in CA3 hippocampal or layer II/III neocortical neurons. The maximum spike frequency evoked by depolarizing current injections in Scn8aN1768D/+ CA1, but not CA3 or neocortical, pyramidal cells was significantly reduced compared with WT. Spontaneous firing was observed in subsets of neurons in CA1 and CA3, but not in the neocortex. The EAD-like waveforms of Scn8aN1768D/+ CA1 hippocampal neurons were blocked by tetrodotoxin, riluzole, and SN-6, implicating elevated persistent INa and reverse mode Na/Ca exchange in the mechanism of hyperexcitability. Our results demonstrate that Scn8a plays a vital role in neuronal excitability and provide insight into the mechanism and future treatment of epileptogenesis in EIEE13.


Assuntos
Região CA1 Hipocampal/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Células Piramidais/metabolismo , Espasmos Infantis/genética , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Compostos de Benzil/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Especificidade de Órgãos , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Espasmos Infantis/metabolismo , Espasmos Infantis/fisiopatologia , Tetrodotoxina/farmacologia , Tiazolidinas/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-27932425

RESUMO

BACKGROUND: Mutations in SCN2B, encoding voltage-gated sodium channel ß2-subunits, are associated with human cardiac arrhythmias, including atrial fibrillation and Brugada syndrome. Because of this, we propose that ß2-subunits play critical roles in the establishment or maintenance of normal cardiac electric activity in vivo. METHODS AND RESULTS: To understand the pathophysiological roles of ß2 in the heart, we investigated the cardiac phenotype of Scn2b null mice. We observed reduced sodium and potassium current densities in ventricular myocytes, as well as conduction slowing in the right ventricular outflow tract region. Functional reentry, resulting from the interplay between slowed conduction, prolonged repolarization, and increased incidence of premature ventricular complexes, was found to underlie the mechanism of spontaneous polymorphic ventricular tachycardia. Scn5a transcript levels were similar in Scn2b null and wild-type ventricles, as were levels of Nav1.5 protein, suggesting that similar to the previous work in neurons, the major function of ß2-subunits in the ventricle is to chaperone voltage-gated sodium channel α-subunits to the plasma membrane. Interestingly, Scn2b deletion resulted in region-specific effects in the heart. Scn2b null atria had normal levels of sodium current density compared with wild type. Scn2b null hearts were more susceptible to atrial fibrillation, had increased levels of fibrosis, and higher repolarization dispersion than wild-type littermates. CONCLUSIONS: Genetic deletion of Scn2b in mice results in ventricular and atrial arrhythmias, consistent with reported SCN2B mutations in human patients.


Assuntos
Fibrilação Atrial/genética , Sistema de Condução Cardíaco/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Potássio/genética , Taquicardia Ventricular/genética , Subunidade beta-2 do Canal de Sódio Disparado por Voltagem/genética , Potenciais de Ação , Animais , Fibrilação Atrial/fisiopatologia , Western Blotting , Células Cultivadas , Deleção de Genes , Predisposição Genética para Doença , Camundongos , Monócitos , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taquicardia Ventricular/fisiopatologia
7.
Proc Natl Acad Sci U S A ; 113(45): 12838-12843, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791149

RESUMO

Patients with early infantile epileptic encephalopathy (EIEE) are at increased risk for sudden unexpected death in epilepsy (SUDEP). De novo mutations of the sodium channel gene SCN8A, encoding the sodium channel Nav1.6, result in EIEE13 (OMIM 614558), which has a 10% risk of SUDEP. Here, we investigated the cardiac phenotype of a mouse model expressing the gain of function EIEE13 patient mutation p.Asn1768Asp in Scn8a (Nav1.6-N1768D). We tested Scn8aN1768D/+ mice for alterations in cardiac excitability. We observed prolongation of the early stages of action potential (AP) repolarization in mutant myocytes vs. controls. Scn8aN1768D/+ myocytes were hyperexcitable, with a lowered threshold for AP firing, increased incidence of delayed afterdepolarizations, increased calcium transient duration, increased incidence of diastolic calcium release, and ectopic contractility. Calcium transient duration and diastolic calcium release in the mutant myocytes were tetrodotoxin-sensitive. A selective inhibitor of reverse mode Na/Ca exchange blocked the increased incidence of diastolic calcium release in mutant cells. Scn8aN1768D/+ mice exhibited bradycardia compared with controls. This difference in heart rate dissipated after administration of norepinephrine, and there were no differences in heart rate in denervated ex vivo hearts, implicating parasympathetic hyperexcitability in the Scn8aN1768D/+ animals. When challenged with norepinephrine and caffeine to simulate a catecholaminergic surge, Scn8aN1768D/+ mice showed ventricular arrhythmias. Two of three mutant mice under continuous ECG telemetry recording experienced death, with severe bradycardia preceding asystole. Thus, in addition to central neuron hyperexcitability, Scn8aN1768D/+ mice have cardiac myoycte and parasympathetic neuron hyperexcitability. Simultaneous dysfunction in these systems may contribute to SUDEP associated with mutations of Scn8a.

8.
Circ Res ; 114(6): 982-92, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24508725

RESUMO

RATIONALE: Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE: To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS: Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS: MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio Kv1.5/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Miosinas/fisiologia , Transporte Proteico/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Linhagem Celular , Conexina 43/análise , Canal de Potássio ERG1 , Endocitose , Canais de Potássio Éter-A-Go-Go/análise , Junções Comunicantes , Genes Reporter , Sistema de Condução Cardíaco/fisiopatologia , Transporte de Íons , Canal de Potássio Kv1.5/genética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Cadeias Pesadas de Miosina/deficiência , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/deficiência , Miosina Tipo V/genética , Miosinas/deficiência , Miosinas/genética , Potássio/metabolismo , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
9.
J Cardiovasc Pharmacol Ther ; 19(1): 121-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24288396

RESUMO

We recently showed that Bendavia, a novel mitochondria-targeting peptide, reduced infarction and no-reflow across several experimental models. The purpose of this study was to determine the therapeutic timing and mechanism of action that underlie Bendavia's cytoprotective property. In rabbits exposed to in vivo ischemia/reperfusion (30/180 min), Bendavia administered 20 minutes prior to reperfusion (0.05 mg/kg/h, intravenously) reduced myocardial infarct size by ∼50% when administered for either 1 or 3 hours of reperfusion. However, when Bendavia perfusion began just 10 minutes after the onset of reperfusion, the protection against infarction and no-reflow was completely lost, indicating that the mechanism of protection is occurring early in reperfusion. Experiments in isolated mouse liver mitochondria found no discernible effect of Bendavia on blocking the permeability transition pore, and studies in isolated heart mitochondria showed no effect of Bendavia on respiratory rates. As Bendavia significantly lowered reactive oxygen species (ROS) levels in isolated heart mitochondria, the ROS-scavenging capacity of Bendavia was compared to well-known ROS scavengers using in vitro (cell-free) systems that enzymatically generate ROS. Across doses ranging from 1 nmol/L to 1 mmol/L, Bendavia showed no discernible ROS-scavenging properties, clearly differentiating itself from prototypical scavengers. In conclusion, Bendavia is a promising candidate to reduce cardiac injury when present at the onset of reperfusion but not after reperfusion has already commenced. Given that both infarction and no-reflow are related to increased cellular ROS, Bendavia's protective mechanism of action likely involves reduced ROS generation (as opposed to augmented scavenging) by endothelial and myocyte mitochondria.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Oligopeptídeos/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Cobaias , Masculino , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Oligopeptídeos/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
10.
Nanotoxicology ; 8(1): 38-49, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23102262

RESUMO

The growing use of multi-walled carbon nanotubes (MWCNTs) across industry has increased human exposures. We tested the hypothesis that pulmonary instillation of MWCNTs would exacerbate cardiac ischaemia/reperfusion (I/R) injury. One day following intratracheal instillation of 1, 10 or 100 µg MWCNT in Sprague-Dawley rats, we used a Langendorff isolated heart model to examine cardiac I/R injury. In the 100 µg MWCNT group we report increased premature ventricular contractions at baseline and increased myocardial infarction. This was associated with increased endothelin-1 (ET-1) release and depression of coronary flow during early reperfusion. We also tested if isolated coronary vascular responses were affected by MWCNT instillation and found trends for enhanced coronary tone, which were dependent on ET-1, cyclooxygenase, thromboxane and Rho-kinase. We concluded that instillation of MWCNTs promoted cardiac injury and depressed coronary flow by invoking vasoconstrictive mechanisms involving ET-1, cyclooxygenase, thromboxane and Rho-kinase.


Assuntos
Coração/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Vasoconstritores/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Circulação Coronária/efeitos dos fármacos , Endotelina-1/metabolismo , Coração/fisiopatologia , Masculino , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Tromboxanos/metabolismo , Vasoconstritores/administração & dosagem , Pressão Ventricular/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
11.
Comp Med ; 63(5): 416-21, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24210018

RESUMO

Even though cardiovascular disease is the leading cause of death for men and women, the vast majority of animal studies use male animals. Because female reproductive hormones have been associated with cardioprotective states, many investigators avoid using female animals because these hormones are cyclical and may introduce experimental variability. In addition, no studies have investigated the specific effects of the estrous cycle on cardiac ischemic injury. This study was conducted to determine whether the estrous cycle stage influences the susceptibility to ischemic injury in rat hearts. Estrous cycle stage was determined by using vaginal smear cytology, after which hearts underwent either in vivo (surgical) or ex vivo (isolated) ischemia-reperfusion injury. For in vivo studies, the left anterior coronary artery was ligated for 25 min of ischemia and subsequently released for 120 min of reperfusion. Infarct sizes were 42% ± 6%; 49% ± 4%; 40% ± 9%; 47% ± 9% of the zone-at-risk for rats in proestrus, estrus, metestrus, and diestrus, respectively. For ex vivo studies, isolated, perfused hearts underwent global ischemia and reperfusion for 25 and 120 min, respectively. Similar to our in vivo studies, the ex vivo rat model showed no significant differences in susceptibility to infarction or extent of cardiac arrhythmia according to estrous stage. To our knowledge, these studies provide the first direct evidence that the stage of estrous cycle does not significantly alter cardiac ischemia-reperfusion injury in rats.


Assuntos
Ciclo Estral , Traumatismo por Reperfusão/veterinária , Doenças dos Roedores/fisiopatologia , Animais , Suscetibilidade a Doenças/veterinária , Feminino , Hemodinâmica , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/fisiopatologia
12.
Cardiovasc Res ; 98(1): 47-55, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23341578

RESUMO

AIMS: We have previously shown that exercise leads to sustainable cardioprotection through a mechanism involving improved glutathione replenishment. This study was conducted to determine if redox-dependent modifications in glutathione reductase (GR) were involved in exercise cardioprotection. Furthermore, we sought to determine if reactive oxygen species generated by NADPH oxidase and/or mitochondria during exercise were triggering events for GR modulations. METHODS AND RESULTS: Rats were exercised for 10 consecutive days, after which isolated hearts were exposed to ischaemia/reperfusion (25 min/120 min). Exercise protected against infarction and arrhythmia, and preserved coronary flow. The GR inhibitor BCNU abolished the beneficial effects. GR activity was increased following exercise in a redox-dependent manner, with no change in GR protein levels. Because fluorescent labelling of GR protein thiols showed lower amounts of reduced thiols after exercise, we sought to determine the source of intracellular reactive oxygen species that may be activating GR. Subsets of animals were exercised immediately after treatment with either NADPH-oxidase inhibitors apocynin or Vas2870, or with mitoTEMPO or Bendavia, which reduce mitochondrial reactive oxygen species levels. The cardioprotective effects of exercise were abolished if animals exercised in the presence of NADPH oxidase inhibitors, in clear contrast to the mitochondrial reagents. These changes correlated with thiol-dependent modifications of GR. CONCLUSION: Adaptive cardioprotective signalling is triggered by reactive oxygen species from NADPH oxidase, and leads to improved glutathione replenishment through redox-dependent modifications in GR.


Assuntos
Glutationa Redutase/fisiologia , Mitocôndrias/fisiologia , NADPH Oxidases/fisiologia , Condicionamento Físico Animal , Animais , Feminino , Glutationa/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
J Am Heart Assoc ; 1(3): e001644, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23130143

RESUMO

BACKGROUND: Manifestations of reperfusion injury include myocyte death leading to infarction, contractile dysfunction, and vascular injury characterized by the "no-reflow" phenomenon. Mitochondria-produced reactive oxygen species are believed to be centrally involved in each of these aspects of reperfusion injury, although currently no therapies reduce reperfusion injury by targeting mitochondria specifically. METHODS AND RESULTS: We investigated the cardioprotective effects of a mitochondria-targeted peptide, Bendavia (Stealth Peptides), across a spectrum of experimental cardiac ischemia/reperfusion models. Postischemic administration of Bendavia reduced infarct size in an in vivo sheep model by 15% (P=0.02) and in an ex vivo guinea pig model by 38% to 42% (P<0.05). In an in vivo rabbit model, the extent of coronary no-reflow was assessed with Thioflavin S staining and was significantly smaller in the Bendavia group for any given ischemic risk area than in the control group (P=0.0085). Myocardial uptake of Bendavia was ≈25% per minute, and uptake remained consistent throughout reperfusion. Postischemic recovery of cardiac hemodynamics was not influenced by Bendavia in any of the models studied. Isolated myocytes exposed to hypoxia/reoxygenation showed improved survival when treated with Bendavia. This protection appeared to be mediated by lowered reactive oxygen species-mediated cell death during reoxygenation, associated with sustainment of mitochondrial membrane potential in Bendavia-treated myocytes. CONCLUSIONS: Postischemic administration of Bendavia protected against reperfusion injury in several distinct models of injury. These data suggest that Bendavia is a mitochondria-targeted therapy that reduces reperfusion injury by maintaining mitochondrial energetics and suppressing cellular reactive oxygen species levels. (J Am Heart Assoc. 2012;1:e001644 doi: 10.1161/JAHA.112.001644.).

14.
J Mol Cell Cardiol ; 52(5): 1009-18, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406429

RESUMO

Mitochondria from diabetic hearts are sensitized to mitochondrial permeability transition pore (PTP) opening, which may be responsible for the increased propensity for cardiac injury in diabetic hearts. The purpose of this study was to determine if redox-dependent PTP opening contributes to augmented injury in diabetic hearts, and if compounds targeted at mitochondrial PTP, ROS, and calcium influx protected diabetic hearts from injury. Hearts from control or streptozotocin-induced diabetic rats were excised for either whole-heart or isolated mitochondria experiments. Myocardial glutathione content was oxidized in diabetic hearts when compared to control, and this translated to increased oxidation of the adenine nucleotide translocase in diabetic hearts. Diabetic mitochondria displayed significantly greater sensitivity to PTP opening than non-diabetic counterparts, which was reversed with the thiol-reducing agent dithiothreitol. The thiol-oxidant diamide increased calcium sensitivity in control, but not diabetic mitochondria. Diabetic animals treated with the mitochondria-targeted ROS suppressing peptide MTP-131 also showed improved resistance to PTP opening. In separate experiments hearts underwent ex vivo ischemia/reperfusion (IR). Diabetic hearts were more susceptible to IR injury, with infarct sizes of 60 ± 4% of the area-at-risk (vs. 46 ± 2% in non-diabetics; P<0.05). Administration of the PTP blocker NIM811 (5 µM), MTP-131 (1 nM) or the mitochondrial calcium uniporter blocker minocycline (1 µM) at the onset of reperfusion reduced infarct sizes in both control and diabetic hearts. These findings suggest that augmented susceptibility to injury in the diabetic heart is mediated by redox-dependent shifts in PTP opening, and that three novel mitochondria-targeted agents administered at reperfusion may be suitable adjuvant reperfusion therapies to attenuate injury in diabetic patients.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Oligopeptídeos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Sinalização do Cálcio , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hemodinâmica , Técnicas In Vitro , Masculino , Minociclina/farmacologia , Minociclina/uso terapêutico , Mitocôndrias Cardíacas/efeitos dos fármacos , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Oligopeptídeos/uso terapêutico , Oxirredução , Permeabilidade , Ratos , Ratos Sprague-Dawley
15.
J Appl Physiol (1985) ; 111(6): 1751-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21940849

RESUMO

The purpose of this study was to determine if exercise (Ex) protects hearts from arrhythmias induced by glutathione oxidation or ischemia-reperfusion (I/R). Female Sprague-Dawley rats were divided into two experimental groups: sedentary controls (Sed) or short-term Ex (10 days of treadmill running). Twenty-four hours after the last session, hearts were excised and exposed to either perfusion with the thiol oxidant diamide (200 µM) or global I/R. Ex significantly delayed the time to the onset of ventricular arrhythmia after irreversible diamide perfusion. During a shorter diamide perfusion protocol with washout, Ex significantly decreased the incidence of arrhythmia, as evidenced by a delayed time to the first observed arrhythmia, lower arrhythmia scores, and lower incidence of ventricular fibrillation. Ex hearts exposed to I/R (30-min ischemia/30-min reperfusion) also showed lower arrhythmia scores and incidence of ventricular fibrillation compared with Sed counterparts. Our finding that Ex protected intact hearts from thiol oxidation was corroborated in isolated ventricular myocytes. In myocytes from Ex animals, both the increase in H(2)O(2) fluorescence and incidence of cell death were delayed after diamide. Although there were no baseline differences in reduced-to-oxidized glutathione ratios (GSH/GSSG) between the Sed and Ex groups, GSH/GSSG was better preserved in Ex groups after diamide perfusion and I/R. Myocardial glutathione reductase activity was significantly enhanced after Ex, and this was preserved in the Ex group after diamide perfusion. Our results show that Ex protects the heart from arrhythmias after two different oxidative stressors and support the hypothesis that sustaining the GSH/GSSG pool stabilizes cardiac electrical function during conditions of oxidative stress.


Assuntos
Arritmias Cardíacas/prevenção & controle , Glutationa/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Técnicas In Vitro , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Oxirredução , Condicionamento Físico Animal/métodos , Ratos , Ratos Sprague-Dawley , Compostos de Sulfidrila/metabolismo , Fatores de Tempo
16.
J Am Assoc Lab Anim Sci ; 50(3): 349-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21640030

RESUMO

Choosing an appropriate anesthetic protocol that will have minimal effect on experimental design can be difficult. Guinea pigs have highly variable responses to a variety of injectable anesthetics, including ketamine-xylazine (KX). Because of this variability, supplemental doses often are required to obtain an adequate plane of anesthesia. Our group studies the isolated guinea pig heart, and we must anesthetize guinea pigs prior to harvesting this organ. In this study, we sought to determine whether a higher dose of KX protected isolated guinea pig hearts against myocardial ischemia-reperfusion injury. Male Hartley guinea pigs (Crl:HA; 275 to 300 g; n = 14) were anesthetized with either of 2 doses of KX (K: 85 mg/kg, X: 15 mg/kg; or K: 200 mg/kg, X: 60 mg/kg). After thoracotomy, hearts underwent 20 min of ischemia followed by 2 h of reperfusion. The high dose of KX significantly reduced myocardial infarct size as compared with the low dose (36% ± 3% and 51% ± 6%, respectively). Furthermore, the high dose of KX improved hemodynamic function over that associated with the low dose as measured by increases in both left ventricular developed pressure (49 ± 4 and 30 ± 8 mm Hg, respectively) and maximal rate of left ventricular relaxation (-876 ± 70 and -576 ± 120 mm Hg/s, respectively). However, the high dose of KX did not alter the maximal rate of left ventricular contraction or coronary flow. These results suggest that supplementation of KX to ensure an adequate anesthetic plane may introduce unwanted variability in ischemia-reperfusion studies.


Assuntos
Anestésicos Combinados/uso terapêutico , Anestésicos/uso terapêutico , Animais de Laboratório/fisiologia , Cobaias/fisiologia , Ketamina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Xilazina/uso terapêutico , Anestésicos/farmacologia , Anestésicos Combinados/farmacologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Relação Dose-Resposta a Droga , Eletrocardiografia , Ketamina/farmacologia , Masculino , Modelos Animais , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Coleta de Tecidos e Órgãos/métodos , Coleta de Tecidos e Órgãos/veterinária , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia , Xilazina/farmacologia
17.
J Appl Physiol (1985) ; 111(3): 905-15, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21393468

RESUMO

The ability of exercise to protect the heart against ischemia-reperfusion (I/R) injury is well known in both human epidemiological studies and experimental animal models. In this review article, we describe what is currently known about the ability of exercise to precondition the heart against infarction. Just 1 day of exercise can protect the heart against ischemia/reperfusion damage, and this protection is upheld with months of exercise, making exercise one of the few sustainable preconditioning stimuli. Exercise preconditioning depends on the model and intensity of exercise, and appears to involve heightened oxidant buffering capacity, upregulated subunits of sarcolemmal ATP-sensitive potassium channels, and adaptations to cardiac mitochondria. We review the putative mechanisms involved in exercise preconditioning and point out many areas where future research is necessary to advance our understanding of how this stimulus confers resistance against I/R damage.


Assuntos
Exercício Físico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Cálcio/metabolismo , Metabolismo Energético , Humanos , Canais KATP/metabolismo , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
18.
J Mol Cell Cardiol ; 48(4): 673-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19962380

RESUMO

We have previously proposed that the heterogeneous collapse of mitochondrial inner membrane potential (DeltaPsi(m)) during ischemia and reperfusion contributes to arrhythmogenesis through the formation of metabolic sinks in the myocardium, wherein clusters of myocytes with uncoupled mitochondria and high K(ATP) current levels alter electrical propagation to promote reentry. Single myocyte studies have also shown that cell-wide DeltaPsi(m) depolarization, through a reactive oxygen species (ROS)-induced ROS release mechanism, can be triggered by global depletion of the antioxidant pool with diamide, a glutathione oxidant. Here we examine whether diamide causes mitochondrial depolarization and promotes arrhythmias in normoxic isolated perfused guinea pig hearts. We also investigate whether stabilization of DeltaPsi(m) with a ligand of the mitochondrial benzodiazepine receptor (4'-chlorodiazepam; 4-ClDzp) prevents the formation of metabolic sinks and, consequently, precludes arrhythmias. Oxidation of the GSH pool was initiated by treatment with 200 microM diamide for 35 min, followed by washout. This treatment increased GSSG and decreased both total GSH and the GSH/GSSG ratio. All hearts receiving diamide transitioned from sinus rhythm into ventricular tachycardia and/or ventricular fibrillation during the diamide exposure: arrhythmia scores were 5.5+/-0.5; n=6 hearts. These arrhythmias and impaired LV function were significantly inhibited by co-administration of 4-ClDzp (64 microM): arrhythmia scores with diamide+4-ClDzp were 0.4+/-0.2 (n=5; P<0.05 vs. diamide alone). Imaging DeltaPsi(m) in intact hearts revealed the heterogeneous collapse of DeltaPsi(m) beginning 20 min into diamide, paralleling the timeframe for the onset of arrhythmias. Loss of DeltaPsi(m) was prevented by 4-ClDzp treatment, as was the increase in myocardial GSSG. These findings show that oxidative stress induced by oxidation of GSH with diamide can cause electromechanical dysfunction under normoxic conditions. Analogous to ischemia-reperfusion injury, the dysfunction depends on the mitochondrial energy state. Targeting the mitochondrial benzodiazepine receptor can prevent electrical and mechanical dysfunction in both models of oxidative stress.


Assuntos
Arritmias Cardíacas/metabolismo , Glutationa/metabolismo , Potencial da Membrana Mitocondrial , Oxigênio/metabolismo , Animais , Arritmias Cardíacas/patologia , Cobaias , Coração/fisiologia , Ventrículos do Coração/patologia , Isquemia , Masculino , Mitocôndrias/metabolismo , Células Musculares/citologia , Oxidantes/química , Oxigênio/química , Espécies Reativas de Oxigênio , Receptores de GABA-A/química , Traumatismo por Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...